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Collisional Relaxation of Transient Vibrational Energy Distributions
in a Thermal Unimolecular System.a The Variable Encounter Method.

b and B. S. Rabinovitch

D. F. Kelley, L. Zalotai
Department of Chemistry BG-10, University of Washington
Seattle, WA 98195

Abstract

A method has been developed, called the Variable Encounter Method,
for the study of the relaxation of an initial vibrationally cold ensemble
of molecules into a vibrationally hot distribution by a known and variable
number of successive collisions with a hot wall. The theory of the experi-
ment is presented. The system studied was the isomerization of 1,1,cyclo-
propane-d2 with a fused quartz wall temperature of 800 K to 1175K, and
average number of collisions from 2.3 to 22.3. Various modified gaussian
and exponential models of energy transfer were found to give agreement with

the data. The average down-step size was found to decline from $ 3500 cm']

L at the highest on the basis of a

at the lowest temperature to ~ 2500 cm”
gaussian model. A mathematical analysis of the relation between mean first

passage times and incubation times is given. Incubation times increase

from ~ 7 to ~ 12 collisions with increasing temperature. Transient population

distributions and the sequential reaction probabilities as a function of

collision number are calculated.




INTRODUCTION

There have been no previous measurements of the dynamics of the collisional
relaxation of vibrationally excited polyatomic molecules. If an ensemble of
reactant molecules embedded in a hot bath gas starts out in a "cold" distribu-
tion, whether Boltzmann or not, it will relax by collisions with the bath gas
molecules to a steady-state "hot" distribution. The study of reaction proba-
bilities associated with the intermediate distributions can provide insights
into the form of the energy transfer distribution function over the entire
range of energies from 0 to Eo, the reaction threshold. One may thus determine
the entire matrix of collision energy transfer probabilities P . The proba-
bility matrix also appears in expressions for the mean first passage time,

Efp’ of molecules with respect to an absorbing barrier, as given by Kim] and
widom.2 In the trivial case of a constant temperature, steady-state, low
pressure, unimolecular system, Efp = I/ko. where ko is the low pressure rate
constant.

Formal theoretical treatments of the transient in vibrational relaxation
have been given for special assumed forms of 2.3'4 Usual treatments have con-
sidered the relaxation to be a continuous rather than discrete process. This
is valid for the case of a fixed time interval between collisions only if the
relaxation time is long compared to the time between collisions. This condition
is not met for a reasonably strong collider. A general treatment then requires
that the relaxation process be formulated in terms of difference rather than

differential equations. The resultant difference equations, which are not tract-

able by any analytical technique, must be solved numerically.

A very simple method of study of the collisicn-by-collision relaxation of
vibrational energy, i.e., of the relaxation transients, has been developed.s'6
The collisions are with a wall which, in analogy with experimental results on

homologous series of bath molecules of increasing size.7 and on the basis of a




quasi-statistical model.a’9 is anticipated to be at least as efficient as any gas-

eous bath molecule. In this technique a molecule experiences a large number of
collisions with a cold wall of known, variable temperature and is brought inte
equilibrium with it before having a series of collisions (an encounter) with

the hat walls of a reactor. By varying the geometry of the reactor, one can
change the average number (and number distribution) of successive hot collisions,
hence the name, Variable Encounter Method (VEM). Escape from the reactor, usually
without reaction, leads to re-equilibration on the cold wall before re-entry

into the hot reactor. The amount of reaction that occurs after a given number

of encounters may be measured.

The reaction chosen fcr this study is the ring opening isomerization

of l.'l-cyclopropane-d2 to propene. This process has a critical threshold of
about 64 kcal and a pre-exponential factor of ~ l.3x10]5 sec'].

studied in the homogeneous steady state case.]0 and a preliminary account of VEM

It has been

work has been reported.6 Light cyclopropane has also been used in VEM work to be
reported.5 This system was chosen not only because homogeneous studies of

energy transfer at comparable temperatures with inert bath gases already
exist,]o but also because this reaction is well known to be notably free

from complicating surface and wall seasoning effects.




II. EXPERIMENTAL

The apparatus consisted of a 5-liter fused quartz spherical flask which
had several quartz cylindrical finger reactors of various dimensions blown onto
the surface. Each finger, which could be heated separately, consisted of a
cylindrical region of length & , terminated by a hemisphere of radius r
which varied from 2.1 to 2.5 cm for different reactors. The ratios of
&/r for the reactors used are given in Table I. The entrance area to a
reactor was v 1% of the total area of the flask. The reactor could be enclosed

in a stainless steel heater block which was heated by clamshell Kanthal ceramic

heaters. Fine silica sand was used as a thermal conduction medium in the approxi-

mately 2-3 mm gap between the quartz reactor and the steel block. Temperature
measurements were made with several chromel-alumel thermocouples glued onto the
outside of the reactor finger. Typical reactor temperatures were 750K to 1150K,
while flask temperatures were 350K to 400K.

Some temperature gradients over the reactor surface, particularly near
the attachment to the cold flask, were unavoidable. This problem was sub-
stantially reduced by having additional heaters embedded in the top of steel
block. In this way, the reactor temperature could be maintained constant to
+ 5° within a distance of ~ 0.7 cm from the top of the reactor where the
temperature commenced a more abrupt decline. The temperature profile over
the longer reactors (where radiation losses were not so great) could be main-
tained constant within 2°-3°. Thus, an uncertain area of reduced temperature
amounted to ~ 10-15% for the smallest reactor and was negligible for the longer

reactors. Calculations indicate that temperature gradients through the quartz

wall (v 2 mm thick) were completely negligible.
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A pre-exposure of the oxidized quartz surface to the substrate, at a pressure
of about leo'4 torr deposited a thin film of “"polycyclopropane" on the surface
and provided reproducible results for the measured rates of isomerization. The
seasoning time required to achieve reproducible results was somewhat longer than
in conventional static systems (i.e., hours and days, rather than minutes or
hours). Prior to a run, the system was pumped down to < 10'6 torr, the
reactant was introduced at‘a pressure usually equal to 1-2x10'4 torr, although
experiments were made over the range 0.5-9.0 x 10-4 torr. Run times varied
from ~ 10 minutes to several hours with the amount of reaction being 1-50%.

Analysis was by gas chromatography with a squalane SCOT column and a

flame ionization detector.




I1T1. CALCULATIONAL TECHNIQUE

1. Calculation of "number of collisions" distribution per encounter

There is a distribution n of the number of collisions made by a
molecule with the wall after entering the reactor (an encounter). The distri-
bution' n was changed by changing the &/r ralio; in this work, &/r varied from
0.17 to 10. This distribution was obtained by a stochastic calculation of the
acutal trajectories of single molecules. In the calculation of n, it was
assumed that the surface is rough on the molecular level, so that a cosine law
distribution of angular reflection is valid after each collision regardless of
incident trajectory. (If this assumption were replaced by one of specular
reflection, it would result in only a modest change in n . The details of this
calculation are now given.

Molecules which cross the boundary plane separating the reactor finger from

the bulb dv so with an angular distribution function
P(6) = 2sinb cos6 , (1)

where P(8) is defined as the normalized probability of a molecule trajectory
making an angle 6 with respect to the normal to the plane. This cosine law
distribution is the general result for effusive molecules. Actually, at typical
operating pressure, the mean free path is comparable to the dimensions of the
spherical flask. However, the same result is obtained by integrating over the

surface of the flask (see App. A).

The z axis is chosen along the axis of the cylinder; z = 0 defines the
plane separating the hemispherical and cylindrical parts of the reactor finger,

with z positive in the hemisphere. The Xo and ¥, coordinates on the 2, " -2/r

plane (separating the cylinder from the large flask) are chosen randomly for
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any one molecule, such that %, * yoz <1, in units of r. The initial trajec-

tory of the molecule is defined by Xo and Yo! by 6 , chosen randomly to conform

to eq. 1, and by an azimuthal angle ¢ , chosen randomly between 0 and 2m. This

trajectory may be written as

(x(t)y(t),z(t)) = (x .yg.2,) + tlx',y',2") (2)

where t is a (continuous) parameter, and x' =sin® cos¢, y'= sin@ sing,

z' = cos®. This trajectory may intersect the reactor in either the cylinder
or the hemisphere; the two cases are handled separately. In either case, one
calculates the first impact coordinates (x],yl.z]). To obtain the new set of
coordinates (x",y",z"), which define the next trajectory analogous to eq. (2),

one first defines a transformation such that,

1 X
0 |-= I 2 -
i
0 Z,
the new coordinates are then given by,

4 1-cos8

)= I'] sing sing | ,

3 sin6 cos¢

where 6 and ¢ are chosen in the same manner as for the initial trajectory.

For the case of the impact on the hemisphere, the matrix representation of

I is given by a product of rotations,
: cosy O siny\/cosa sina O
I = 0 1 0 -sina cosa O
-siny 0 cosy 0 0 1

V= sin'] (z]); a = tan'](y]/x]). For impact on the cylinder, T is a product

of a rotation about the 2 axis and a translation. The next impact point is

found, with consideration, also, of the possibility of escape from the finger.
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This process is repeated until the molecule escapes. In this way, the distri-
bution n is determined by calculating many trajectories (1000-5000, practise).
An average inter-collision free flight distance is also obtained.

From n, it is useful to define a correlation table for each reactor,

[+ s <]
.5 0 ey d g h,
J f=fsy F 42§ !
Cj is defined as the probability that a molecule will have at least j+1 colli-
sions given that it has j, i.e., the probability that a remaining molecule will
not escape after the jth collision (Table I). The average number of collisions per

encounter, m, is recovered from the correlation table by the expression:
© -1
m=§J.LI C, ]-Cj

After a few collisions, the molecule "forgets" the initial conditions and the
correlation table asymptotically approaches a constant. The number of colli-
sions required to reach this limit, within statistical fluctuations introduced
by the stochastic nature of the calculation, varies from 0, for the shortest

reactor, to about 15, for the longest.

2. Simulation of the "collision" process. Models for energy transfer

A normalized Boltzmann population vector N, characteristic of the
flask temperature, is constructed to represent the molecules that enter the
reactor. To simulate a collision, this vector is operated on by the probability
matrix. After each wall collision, the population of each molecular energy level
changes until an equilibrium distribution (or steady state if reaction is
considered) is realized. The population of the ith level after collision,

N; , is given by




where Nj is the population of the jth level before the collision, and pij is
the probability per collision of a transition from the jth level to the ith
level. This equation may be written in matrix form N = PN . Since no

change takes place after an equilibrium distribution of molecules is established,

(B - 1)

g * g

The following constraints thus apply to the P matrix,

P /P54 (Qi/Qj)EXp[-(Ei-Ej)/RT]

e~ 8

Pz = .1
j=o

where 9; is the degeneracy of the ith level.
Since there are, of course, far too many levels to permit their enumera-

tion, the levels are grouped together, usually in "grains" of 100 cm'].

If we now specify the form (model) of the down transitions, this will completely

specify the matrix E . Further details of the construction of this matrix are

given in ref. (11). In the calculations two different models for the proba-

bility of a given down transition, AE , were used:

] exponential: PAE = A exp(-aE/<AE>) 3 0 € AE s 9000 cm'] :
= 0 . AE > 9000 cm”! :
T gaussian: P, = A'exp[-(aE-aE)?/20%] ; 0 € 8E < 9000 ! ;
mp
= 0 . AE > 9000 :

where the limitation AE < 9000 cm'] is a practical computational feature to limit

the total size of the matrix to tractable dimensions; A and A' are normalization

constants which also depend on the up transitions; <AE>, AEmp (mp signifies most

probable), and o are parameters of the model. We note that on the exponential

model, if <AE> << 9000 then the effective size of the average down transition <AE'>




is simply <AE>. For the gaussian model, if o << AEm then this effectively becomes

p

a stepladder model and <AE'> = AEm ifo2 AEm then there is a fairly large

p’ P
probability for elastic or near-elastic transitions, and this form begins to resemble
a poisson model.

In the case of the exponential model, <AE> (or AEmp in the case of the gaussian)
was also 5llowed to vary with initial energy in some calculations. This dependence
was given by <AE> = o + BEX, with the same expression for AEmp. where a, 8, and x
are adjustable parameters. Most thoroughly studied were the cases where B = 0, a
adjustable (a "flat" model), and a = 500, B adjustable, x = 1 (a "linear" model).

(o is not chosen to be zero in the linear model to avoid a singularity in the con-
struction of the matrix). In all cases, down transitions larger than the initial
energy were treated as elastic. The probability matrices so constructed conform to
eqs. 3 and 4.

In the limit of a strong collider, one expects a Boltzmann distribution to
result from every energy level of the initial distribution,in one collision. To
transform the molecules initially at high energy into a Boltzmann distribution
requires a larger down step than is required for molecules initially at lower
energy. Thus,linear models have some pretension to greater physical content

than do flat models.

3. Simulation of the entire encounter process

Between successive wall collisions, say the jth and j+1th, the population
vector must be attenuated for loss due to reaction and escape. The ith element

in the vector is modified by

where Cj is the jth element in the correlation table; k, is the microscopic RRKM

1

rate constant at energy, Ei

i and 1 is the average intercollision time obtained

|
|
‘%




from the average intercollision distance, assuming translational velocity
characteristic of surface temperature. The vibrational parameters used in
the RRKM calculation of ki as a function of energy are given in App. B.
This collision-attenuation process is repeated until the vector Ni £ 0 for
all i, or until some extrapolation procedure may be used (see App. C). The

amount of reaction after each collision is then

] iT 3 -kiT'
Pyt IMLeg0me e (- Qv )

where T' 1is the average flight time before a gas-gas or cold wall collision
after a molecule leaves the reactor finger, both treated on a fixed gap basis.
In this system, the effective pressure is sufficiently low so as to make the
calculation of P} insensitive to the fixed gap approximation, or to any

reasonable error in the calculation of the ki‘ The average probability of

reaction per collision is given by 5E(m) = J P;/m.
J
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V. Results and Discussion

| & Pc(m) as a function of m and temperature.

Figure 1 presents the experimental average probability of reaction
per collision 5c(m) versus temperature for the five reactors. Least-squares
quadrétic fits are shown; the corresponding Arrhenius plots are given in Fig 2.
Values of the observed activation energies are summarized in Table II. If the
wall were a strong collider, there would be no transient, and all 5;(m) curves
would coincide. (Related behavior in strong collider low-pressure thermal uni-
molecular theory is that the rate of reaction of substrate embedded in a bath
gas at temperature T is independent of the initial energy distribution of sub-
strate molecules below the critical threshold Eo.) Figure 3 shows the least
squares fit curves and comparison with several calculated curves. In all cases,

<AE'> was adjusted to fit the m = 2.3 curve, at temperatures where such data

was available.

Several features of the calculated curves reveal themselves:
a) The calculated value of ﬁé(m) is a more sensitive function of <AE'> for
the smaller reactors. This is the reason why <AE'> was in all cases adjusted
to fit the data from the m = 2.3 reactor where available. (It should be kept
in mind, however, that this reactor is probably the one most susceptible to
experimental error, i.e., temperature measurement and gradients over the surface.)
b) For small m, i.e., the case for the first few collisions when relatively
more of the molecules are at low energy, the exponential model is more efficient.
This is due to its relatively greater probability of very large up jumps; this,
in turn, permits a larger contribution to reaction after only a few collisions
than do the gaussian distributions so that a relatively smaller value of <aAE>

is required in order to fit the m = 2.3 data. For large m, by contrast, more

molecules have moved up to higher energies near E0 (Figs. 4-6) and gaussian




St o ey,
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models give larger values of F;(m) than do exponential models; 1he reason for

this is the high probability of near-elastic collisions associated with the

exponential model. Similar effects may also be seen (Fig. 3) upon comparison

of the two gaussian models characterized by different o, where the one with

larger o has properties more closely related to an exponential distribution.
Linear models give higher values of Ee(m) than

do the corresponding flat models for large m reactors. The reason for this is

that the linear model has a lower <AE'> at low energies (Figs. 4-6) and a smaller

probability of effecting transitions from these to energies above Eo (so that a

larger value of <AE'> is required, to fit the data for

the m = 2.3 reactor). For large m, the higher <AE'> associated with the linear

model at higher energies enhances the reaction probability compared to the flat
model. The two effects mentioned above produce the result that the linear
exponential and flat gaussian (o = 0.7 AEmp) curves are virtually coincidental.
As can be seen from Figure 3, three different models all give adequate
(within experimental error) fit to the data. The best fit seems to be obtained
with the flat gaussian (o = 0.7 AEmp) model and the linear exponential model.
The flat gaussian models with o = 0.35 AEmp give poorer fit and are somewhat
above the experimental curves. The linear gaussian models (not shown) lie
slightly above the corresponding flat models, especially at higher temperature.
¢) Regardless of the model, two findings emerge: 1) <AE'> drops significantly
with increasing temperature; and ii) <AE'> for wall collisions is greater
than <AE> for gas-gas collisions (see TableIIl). This drop of <AE> with
temperature is the reason why the Fg(m) curves separate more at higher tempera-
tures. At lower temperatures,one loses resolution between the models as they all

approach closer to the strong collider behavior.

|
|
|
|
|
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2. Sequential reaction probabilities and population distributions

The form of Ee(m) may be written as

= e - 3
P (m) = —jgl P() 40, ¢ (1-P(i))

_ m i=o0
where Ci is the ith entry in the correlation table; thus the continued product
represents the fraction of reactant molecules left after j-1 collisions; P(j)
is the sequential reaction probability, i.e., the probability of
reaction after the jth wall collision made by a molecule. Plots of P(j) for
various models are given in Fig. 7. The smaller m reactors weight the small
J values of theP(j) more than do the larger m reactors. Thus, additional expla-
nations to the effects discussed in the previous section may be seen in terms
of these plots. The reason that the m = 2.3 reactor is much more sensitive to
changes in <AE'> than the larger in reactors is due to the fact that P(j) is
much more sensitive to changes in <AE'> at small j than at large j. That is,

the rate of relaxation is much more sensitive to changes in <AE'> than is the

value to which it relaxes. This has been found to be true for all models.

The relative and absolute population distributions, which formed some
basis for the discussion in the previous section, are shown in Figs. 4-6.
Examination of these figures shows that the population distribution is very

significantly altered after one collision. As a consequence, for these fairly
strong collisions, the reaction rate should be quasi-independent of input

distribution (flask temperature). This was found to be the case experimentally
when the flask temperature was raised by 100° without effect.

It is also clear from these distributions that the average energy approaches
its steady state value rather rapidly. This is due, in part, to the fact that

there is a very large average upstep at low energies. The large upstep is a

result of detailed balance at low energy levels where the densities of molecular




states change very rapidly with energy. A related conclusion is that the
“temperature", as determined by the bulk of the population distribution,
relaxes much more quickly than does the population around Eo’ i.e., than does
the reaction rate. In the case of the gaussian model (o = 0.7 AEmp) at high
temperature, this upstep is so large that the value of Emp after one collision
overshoots the steady state value a little (Fig. 4). Despite the fact that
this gaussian model works well, we question how physically reasonable this
result can be. Indeed,as o was made smaller, other non-physical calculational
results were obtained at lower energies with the gaussian models. For

o= 0.17 AEmp’ P(J) ceased to be a monotonic function of j. For the present
system, in which the energy range of interest varies from zero upward, a simple
step ladder model is quite unsatisfactory. This is in contrast to chemical
activation systems, where only energies around, or above, Eo play an important
role. A variety of additional population distributions for all models discussed
have been calculated and may be found in ref. 6b.

The relative decline in the Arrhenius activation energy with decrease in
m (Table II) illustrates the relative effect of increasing population depletion,
at higher energies, with rise of temperature in the transient regime.

3. Mean first passage time and the "incubation" time

% ", .
The first mean passage time, tfp, as developed by Kim and Widom
gives the average amount of time required for a molecule to attain an energy

equal to or greater than Eo as

Efp = L t p(t) dt ; (5)

nermalized
where p(t) is theAprobability that a molecule will cross Eo' for the first

time, at time t. Efp is a molecular property and is independent of m.

Clearly, Efp is a well-defined quantity at all pressures but is most simply
related to the actual rate of reaction in the low pressure limit of a uni-
molecular system. If the system is at low pressure, p(t) is the probability
of reaction at time t, which is the case we now consider and to which our

system approximates.

e ke
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Equation 5 may be written as a sum

~ J-1
§ tep = ):JP(J) iIIO (1-P(i))

tntervals,
where time is measured in units of collisiong, and the continued product is

the fraction of unreacted molecules after j-1 collisions, «nd At s “"'ty

We define an "incubation" time in terms of mean first passage times,

Ta = tfp t

./@m

where ﬂ:: is the steady state mean first passage time, and Efp is the mean

first passage time for the case of transients. It is shown in Appendix D that

= lim (3 ]P P) + 0(j™? (6)
e (3 -zo (1)/P) + 0(3"“P)

1.

where P is P(«), and j' is a characteristic relaxation time for the system,

and P(j+) > 0.6P. In most cases, the second term of eq. 6 is small; in
the present case, it is n 1w - ]0'7 of the first. So for this
case, we may write

. P .
Tonig jllmu° (j - izo (P(i)/P)) (7)

Dove and Troe 12 define an incubation time T?IC in shock systems by the
equation

N(t)/N(o) = exp[-P(= )(t-T,nc)] (8)

where N(t) is the concentration of reactant at time t, and where eq. (8)
is to be evaluated at sufficiently large t so that all transients have
disappeared. It is shown in Appendix D that T?Ic is simply the special
case T;nc (eq. 7). Calculated values for T;nc are given in Table IV.
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Conclusions

For the temperatures studied in this system, relaxation approaches the
steady state in a small number of collisons ~ 10-20 (Fig. 4) with correspond-
ing incubation times of 7-13 collisions (Table IV). This accounts for the
finding of steady state behavior in low pressure pyrolysis st:udies]4

m 3 80-100.

where

Adequate agreement with the data is obtained with flat exponential,
linear exponential, and flat gaussian (o =0.7AEmp) models. The best agree-
ment is with linear exponential and flat gaussian models whose calculated
Pc(m) curves are essentially indistinguishable. The flat gaussian (o =0.35AEmp)
linear gaussian and stepladder models do not give adequate agreement.

Wall collisions are more efficient than gas phase collisions; a quartz

surface seasoned with a film of "polycyclopropane" is characterized by down
step sizes of ~ 3800 and 2950 cm'] (f1at gaussian model, Table III) at 800K
and 975K, respectively. These compare with lesser values of ~ 3300 and

1900 cm'] deduced previously on a stepladder model for neat cyclopropane-d2
gas phase collisions at the same temperatures (note these values would decline
somewhat on a gaussian model basis).

10

The data of this study also support the previous finding =~ that, in the

temperature range investigated, energy transfer collisional efficiency declines |

at higher temperatures in polyatomic molecule systems.
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Table I. Correlation Tables, Cn, for Various Reactors

0.17

2.3
0.566
.566

0.46

2.9
0.659
.660
.661
-661

1.45

5.0
0.750
.788
.800
.809
.815
.819
.822
.824
.824

4.0

10.5

0.755
.829
.882
.901
.915
.923
.928
.930
«931
.9?1

10.0

22.3

0.759
.833
.889
.908
. 922
.933
. 942
.950
.958
.963
. 968
.972
<975
.978
.979
. 980




m
2.3 2.9 5.0 10.5 22.3
E,(kcal mole’') not defined  35.5 42.5 48 50
Table III. AE Values for Various Models (cm'])
T (K)
Model 825] 900 950 1025 1100 1150
flat expon-  <E> 110000 4300 4000 3000 2550 2300
SN <E's  ~ 6500 3035 2940 2685 2280 2115
linear expo- <aE> 22000 6900 5890 4765 3870 3420
nential
<AE's> A 7800 3500 3400 3160 2900 2720
B ~1.0 0.285 0.24 0.19 0.15 0.13
R e } 3500 3200 3100 2930 2700 2530
mp <AE'>
flat gaussian AE 3200 2800 2700 2540 2330 2175
0=0.7 AE_ L
P e’ 3500 3100 2990 2810 2580 2410

1

2

Table II. Apparent Arrhenius Activation Energies

AE's at this temperature were selected to fit m = 10.5 curve since data for

m = 2.3 was not available. Also, for exponential calculations, the maximum

AE (matrix truncation) is chosen to be 18,000 cm']

1 1

200 cm '; otherwise the customary 9,000 cm~

AE values given at the level of energy, E

"

and 100 cm']

were used.

and the grain size to be




it
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Table IV. Incubation times, t:(number of collisions)

Model

flat gaussian (o=0.ZﬁEm )

p

flat exponential

linear exponential

inc

900K
6.5
7.4

8.0
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Appendix A. Derivation of Angular Distribution Function for Entry in the Reactor

Consider a spherical polar coordinate system (r,0,4) centered in the
large flask. The surface separating the reactor finger from the flask (which

for this purpose is taken to be a differentially small plane of area A) is at
the point 6 = 0; the radius is normalized to unity. We examine the low pressure
case where gas-gas collisions may be ignored and derive the angular distribution
of molecules hitting A assuming a cosine law distribution of molecules coming
off the surface of the flask.
Now consider molecules that leave the sphere from the angular ring 6 to
8 + dd and hit A. This ring has area 2msin® d6. The angle between A and the
1 origin of the coordinate system as seen from any point on the ring at 6 is

f? given by
v o= (m-8)/2 (A1)

The fraction of molecules that leave this ring and hit A is
df = 2cosy dq/2nm (A2)

where dQ is the solid angle subtended by A. (Note that if dQ is set equal
/2

to the "volume element" 2msiny dy then J df = 1 so eq. A2 is normalized.)
0

For the geometry under consideration, dQ = Acosw/rz, where r is the

distance between the ring and A, and r = sin6/siny , so that
il
sin

_ A 2
df = ,FCOS\P

sin 6

This fraction, multiplied by the area of the ring and divided by A, give:

the fraction of molecules incident between y and y + dy,

o
P(v)dy = LSS STV (or sino §2 ay)

sin 6

preen




i
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Using eq. Al, this simplified to,
P(y)dy = 2 cosy siny dy

which is the cosine distribution with the appropriate volume element, as
desired. Although this distribution was derived assuming A to be infinitesmai,

it holds approximately for finite A, provided A is sufficiently small so that

the element of spherical surface of the flask may be approximated as a plane

on A. :




Appendix B. Vibrational Frequencies for RRKM Calculations (cm']).

1,1-Cyc]opropane-d2 molecule:

3100, 3080, 3040, 3020, 2330, 2210, 1480, 1350, 1180, 1130, 1110 (2).
1070, 1030, 1020, 980, 850, 810, 770, 620, 590.

Activated complex:

3020 (4), 2200 (2), 1440, 1400, 1050, 1200, 980 (2), 930, 920, 880, 750,
620, 600, 560, 460.
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Appendix C. Extrapolation Method

The total probability of reaction per encounter may be written as

w 3=1
Pnc = c(m) = § P()( ci(1-P(i)?) (c1)

e 3=l i=o0

where Ci is the ith element in the correlation table (Co =1);
Jj-1

n Ci(l-P(i)) is the fraction of molecules that have at least j collisions.
i=0

P(i) is the sequential reaction probability.

P(j) is a monotonically increasing function of j that asymptotically

approaches a limiting value, P(w). For large enough j, called j*, the

approach to P(~) can be described by the difference equation,

k
R.%
P(k+j*) = P(k+j*-1) [1 + R-*<—’J—> » (€2)
3 Rj*-]

where Rj* and Rj*_] are defined by the following equations

P(37-1) = P(3%-2) (1 + Ryxy) s

and, similarly,

P(3*) = P(§*-1)(1 + Ryx)

One does the iterative simulation up to j*, calculates Rj*-] and Rj* » and
then uses the extrapolated values of P(j) in Cl. It is found that eq. C2
worksquite well if one chooses i* such that Rj* < 0.01. This corresponds
in the present study to a j* of about 15 to 30, We note also that eq. C2.

implies a simple exponential relaxation to P(«) when Rk+j* << 1.
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Appendix D. Incubation Time From First Mean Passage Time.

The incubation time is defined as the difference of mean first passage

times with and without the transient,

For time measured in units of collisions,

o J-1 ® )
Yne .Z] (i) B (1-P(i)) - r(1-p)d (D1)
j=

i=0 j=1

where P is P(x).

These sums may be performed directly; however, they converge very slowly

so that this becomes computationally undesirable. The following technique
may be used to approximate the sum to any desired level of accuracy. We
define j' such that P(j') has virtually converged on P and, recognizing that

the second term contains a binomial expansion of 1/P2. we rewrite eq. D1 as

g U | =
I 30-p)3 Tno(-p(i)) - (1-P)/P. (D2)
Jj=1 i=o J=j'+1 i=o0

j-1

T * f PGE) M (-P()) + P

We note that t:; = (1-P)/P = 1/P (where t:: is not exactly 1/P because an
integral was replaced by a discrete sum). Adding and subtracting to the second

term of eq. D2,

s el -5 S cei gt
foe = L PGT (- + 0 () (-n) (-0 T 300-9)
J=1 i=0 i=o i
- f J'(1-P)j - {(1-P)/Pp
J=1

or g L 4 :

o= 1 3P (-pGin-p T (1-p(i)] (1-pP

j:] i=0 i=o

T
+310-m)173 T epin| - =Py (03)

VRO . 0
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Of course, eq. D3 must be exactly equal to eq. D1 if one lets j' + =

(so P(j') = P exactly), but is calculationally tractable because the sum
converges for relatively small values of j';(in the first term of eq. D3,

terms in the sum approach zero, and in the second term, factors in the product
approach unity, as j' + «; evaluation of eq. D1 would require 10° to 10° terms
whereas eq. D3 requires only 30 to 60). Equation D3 may be simplified further
by expanding in a power series in P (all P(j) are considered io be of order P).

After some manipulation with use of the binomial expansion of (I-P)]'j and

the re]atiOn'

;!

. | j'
m (-P(i)) =1~ ] P@)+ ]
i=0 i=0 i=

i-1
P(i) .f FLA*) & =5 ,
o i“o

eq. D3 becomes

: o 2
Tine = Yim 37 -1 P(i)/P|+ R +0(P) (D4)
J +o i=0
where
& §
R= lim R = lim § §(P(3)-P) +3'(3'-1)P/2 + (1-§') I P(i)
j‘+m j'-rco j=1 i=0

il i-1 ,
+ 1 P() Y PGP,
i=o0 i=o0

Clearly, R is of order P. If P were large, such that the O(Pz) term should
be evaluated, then eq. D3 should be used. If P is sufficiently small,

eq. D4 becomes simply

J'-1
L= lim (§' - P(i)/P) D5)
Tinc o (J 120 (

In the present study, P is 107> to 10'8. so, as will most often be the case,

eq. D5 is entirely adequate.
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To examine the intermediate case, we ignore all terms O(Pz) and derive

a more explicit estimate of the magnitude of R. We write R= § (R

j:] J-RJ'])'

in terms of this sum R is,

a0

J-2
ST, _fl [3(P(3)-P(-1D + PUI-1) = P = (L-pG-DRY T P(D] 06)
+® j= =0

R may be readily calculated for the important special case of exponential
-j/jt

relaxation of the transient, i.e., P(j) = P(1-e /3 ). If the relaxation is

not too fast, then we may replace the sums in eq. D6 by integrals. (Replacing

the sum by an integral in eq. D5 in this case gives jt = T;nc‘) The first two
J'O

terms of eq. D6 cancel and we are left with R = f P(j')/P-1) I P(j)didj', or

0 0
R=-13 j*zP. In general, we find R is 0(j+20). where jT is the character-

istic relaxation time of the transient. The exact relationship between j*,tinc

and the j' necessary for convergence of eq. D3 varies with the nature of the

relaxation process.

For the definition of T?;c given by eq. 8, it follows that (with time

measured in collisions, see (Fig. 8),

AR i 3'+ g In(NG " )/N(O)
But

' j'-]

- InN(3)/N(0) = § P(3) s
j=o
therefore,
- '
I LN P 10171 O
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Fig. 2

Fig. 3
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Figure Captions

Plots of experimental values of P_(m) vs T (K) for each of the
five reactors. Solid curves are quadratic least square fits to

each set of data. The m-number is attached to each set.

Observed rate constants calculated from least square fit curves of
Fig. 1 plotted vs reciprocal of absolute temperature. The m = 2.3
curve has too much curvature for the apparent activation energy to

be well defined.

Comparison of the experimental 5£(m) vs T least square fit curve
(solid) for each reactor (Fig. 1) with curves calculated on the basis

of various models: , flat gaussian (o = 0.35 AEmp);

—— — — , linear exponential and flat gaussian (o = 0.7 AEmp)
———, flat exponential. The linear exponential and flat gaussian

(o0 = 0.7 AEmp) curves are essentially indistinguishable. The m = 10.5
curves are not shown to avoid cluttering of the graph; however, the
relative positions of these curves are very similar to those for the

m = 22.3 case. For each model, the AE value was chosen at a particular

temperature so as to fit the m = 2.3 curve; the values are given in

Table III.

Histograms of the calculated sequential reaction probability P(n) vs n,
the number of consecutive collisions. Calculations performed at
a) 900K and b) 1150K with: ... , gaussian (o = 0.7 aE 3

p
, linear exponential; and — — — , flat exponential models,

with AE values indicated in Table III.




§ Fig. 5

Fig. 6

Fig. 7

Fig. 8
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a) Absolute population distributions N(E) vs E at 900K, portrayed
after various numbers of collisions (attached to each curve) and
calculated with linear exponential or (indistinguishable) flat
gaussian (o = 0.7 AEmp) models. The curves on the right represent
magnification of ordinate scale by a factor of 100. The n = 17 dis-
tribution closely approximates the steady state distribution.

b) Absolute population distributions N(E) vs E at 1150K calculated
with the flat gaussian (o = 0.7 AEmp) model and portrayed after various
numbers of collisions. The n = 21 distribution curve is essentially

steady state. See caption (a).

Absolute population distribution at 1150K calculated with the linear
exponential model after various numbers of collisions. The n = 25

distribution approximates the steady state. See caption Fig. 5a.

Relative population distributions N(E)/N(E)eq 1§_E(cm']) calculated
with the linear exponential model at a) 900K and b) 1150K, portrayed
after various numbers of collisions (attached to each curve). In both
cases, the distribution of the last coliision shown approximates the

steady state distribution.

Graphical representation of eq. 8. Solid curve is asymptotic to

dashed line whose slope is steady state reaction rate P .
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